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Laminar flows in annular ducts of rectangular cross-section subjected to a constant 
axial magnetic field B, are considered. The equations of flow are treated by a perturba- 
tion method involving infinite aeries expansions in ascending powers of the ratio 
A = a/R, (where a and R, are respectively the height and the mean radius of the 
annular duct). 

The leading terms of the series are calculated in the range of high values of the 
Hartmann number N by means of a boundary-layer technique. When M is large, the 
secondary flow pattern exhibits two profoundly distinct features. Firstly, in the 
Hartmann and interior regions, secondary flows have a one-dimensional structure and 
involve no inertial effects if the curvature of the duct is small enough; secondly, in thin 
layers near the walls parallel to the magnetic field, the secondary flow pattern is 
dramatically influenced by the conductivities of the walls: varying these conductivities 
gives rise to either one or several counter-rotating eddies. When the Reynolds number 
of the flow increw,  inertial effects emanating from these layers penetrate the core 
of the duct by convective transport. Order-of-magnitude arguments show that the 
mean velocity is affected by secondary flow effects when KM-f becomes large, where 
K is the Dean number of the flow. 

1. Introduction 
The problem of laminar secondary flows within curved ducts has attracted much 

interest over the last few decades. The main reason lies in the fact that theoretical 
studies give at leaat qualitative information about real flows commonly encountered 
in engineering devices: turbomachinary blade pwages, diffusers, heat exchangem, 
etc. 

In hydrodynamics, extensive theoretical and experimental work haa been carried 
out on the subject for various shapes of the cross-section of the duct (round, elliptic, 
rectangular). In contraat only very little has been published in mqpetohydrodynamics. 
The most comprehensive study on the subject has been performed by Baylis & Hunt in 
1971. In a first paper, Baylie (1971) camied out experiments on electromagnetically 
driven flows in curved ducts subjected to an axial, constant magnetic field. He showed 
that the magnetic field tends to damp secondary flows provided it is strong enough. 
This waa justified in a later paper (Baylia & Hunt 1971) by order-of-magnitude argu- 
ments. However, in such an analysis, the authors underestimated secondary flow 
effects emanating from layers near the walls parallel to the magnetic field. When the 
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FIQURE 1. Duct geometry and co-ordinate system. 

Dean number is sufficiently large, Baylis (1971) showed that friction-factor laws are 
of hydrodynamic type, i.e. are not affected by the magnetic field. Recently, Tabeling k 
Chabrerie (1978 a) extended the experiments of Baylis to the cme of rectangular ducts 
of various mpect ratios, and observed similar results. 

The objective of the present paper is to investigate in detail magnetohydrodynamic 
secondary flows of liquid metals. We shall consider hereafter laminar flows in curved 
ducts of rectangular cross-section subjected to a strong uniform axial magnetic field. 

In 5 1 we derive the equations of the problem. In  5 2 we introduced the perturbation 
scheme, and in $5 3,4  and 5 we obtain the first two terms of the corresponding expan- 
sions. Secondary flow effects are studied in 5 6. 

2. Equations of the problem 
We consider steady, fully developed laminar flows of liquid metal in annular ducts 

of rectangular cross-section (see figure 1). We set Oz as the axis of revolution of the 
torus, and usepolar co-ordinates r, 8;z. The walls of the duct, located at r = &, R8 and 
z = & a, are assumed to be symmetrically identical and we denote each pair of them 
by a single letter A or B (see figure 1); their conductivities and thicknesses are respec- 
tively gA, W, and gB, wB. In addition we aasume that W, 4 a and wB 4 a. 

The duct is subjected to a constant uniform magnetic field B, applied in the Oz 
direction and the fluid is driven by a constant pressure gradient aP/N in the azimuthal 
direction. 

We set up the governing equations of the flow subject to the following assumptions: 
first, the flow is axisymmetric, so that all &derivatives are identically zero except that 
for the pressure P. Further, we consider the cme of very low magnetic Reynolds 
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number R, = up,U*a, where U, ,ao and U* are the fluid conductivity, the vacuum 
permittivity and a characteristic velocity scale. This later assumption allows us to 
neglect in the equations of flow the induced magnetic field compared to B,. We replace 
then the Lorentz forces J x B by J x B, (where J is the current density and B, the 
magnetic field), and the induced electrical field U x B by U x B, (where U is the 
velocity field). The resulting equations can be written in terms of V,, Ue, U,, P and H ,  
(where He i s  the 8-component of the magnetic field). We find: 

and a v ,  v, aq 
ar r az 
-+-+- = 0. 

Here A denotes the Laplacian operator expressed in polar co-ordinates, i.e. 

a 2  1 a a 2  

ar2 r ar az,' 
A = -+--+- 

p and v are respectively the volumetric mass density and the kinematic viscosity. 
Using the thin-wall approximation (ShercM 1956), the boundary conditions are: 

It is convenient at this stage to introduce the stream function 4 defined by 

i a  V,=-% and U , = - - ( r $ ) .  
a2 r ar 

Now we introduce the following dimensionless quantitiea: 
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M = Boa(a/f)4 (Hartmann number), and Q = ( -aP/a8)pa3/R0f2 where f is the 
viscosity of the fluid. Using these new quantities, the system (1)-(6) becomes: 

together with (see (6 ) ,  (7)): 

where a2 A a a 2  

a p  i + A g a E  @a’ 
A* = -+-- +- 

cia aa 
DA = - and D, = -. 

~ A W A  ~ B W B  

3. The expansion scheme in series in ascending powers of A 
The following formal method of resolution can be applied to the equations (1 1)-( 16): 

Consider a function g* related to the problem, and expand it as an infinite series in 
ascending powers of A:  

g* = g(O)+hg(”+A2g(2)+ ... +Amg(n)+.... (18) 

The convergence of this series will be discussed in Q 6. (18) defines a perturbation 
scheme in term of h = a/Ro; the leading term g@) is calculated by setting h = 0 directly 
in the problem and hence corresponds to a flow developing in a rectilinear geometry; 
we shall describe this as the ‘primary flow ’. The subsequent terms, #l), . . . , g(n), describe 
the curvature effects. 

4. The leading term (primary flow) in the asymptotic case M B 1 and 
MAC% 1 

Setting A = 0 in the problem, w0 find: 

I ~ $ 0 )  = up) = a,p(o)/aE = = 0, 

a%e/ap + azu,/ag + M ahe/@ = - 1, 
a2he/ap+a ‘h / a 2 + M & g / @  = 0, 
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I 

FIQURE 2. Cross-section of the duct Showing the various regions of the 
flow when M # 1 and Mfc 1. 

together with 

(20) 

In this system as well aa in the following equations we omit the exponent (0)  for ue 
and h,. 

The system (19), (20) has been extensively analyzed for various values of DA and D,. 
We shall restrict ourselves to the aaymptotic cme in which M % 1 and Mfc >> 1, i.e. 
where magnetohydrodynamic effects are the most significant. In this case, the flow 
exhibits the following distinct regions (Temperley & Todd 1971) (see figure 2): 

(I) Interior region, including most of the fluid, but excluding the boundary layers 
on the walls of the duct. 

(H) Hartmann layers, of thickness O(M-l) ,  near the walls BB, excluding regions 
distant O(M-f) from the pair of side walls AA. 
(8) Secondary layers of thickness O(M-f),  near the walls AA. 
(C) Corner regions, i.e. those parts of the Hartmann layers at a distance O ( M 4 )  

(IC) Inner corner regions, i.e. those parts of the duct at a distance O(M-l) from the 

It turns out that ue(E, 7) can be decomposed (Temperley & Todd 1971) aa 

Ue = 0 ,  ahe/ag = 7 DAhe, 5 = + C ;  

and ue = 0,  ahe/Q = T DBhe, 7 = & 1. 

from the side walls AA. 

corners. 

Ue(5, 7) = uer(5,7) +ue& 7') +Ue&', 7) +uec(5', 7') +ue,c(t, 7')- (21) 
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in which UeI is the interior velocity and Ue,, Ues,  Uec, uerc are perturbations describing 
the flow in the region denoted by the subscripts; f ,  7' and t are inner co-ordinates 
defined by E' = Mi(c  -[), 7' = M(1-7) and t = M(c-5 )  for the quarter-plane 6 2 0, 
7 2 0, similar expressions holding for the other parts of the duct. By definition, all 
perturbations as well as their derivatives are negligible outside their regions of 
influence. 

The flow is uniform in the interior region and it decreases exponentially in Hartmann 
layers. We have (Temperley & Todd 1971): 

In the secondary layers, the problem is more complicated. To first order (in the 
quarter-plane 6 2 0, 7 2 0), the governing equations for pes, hes are (Temperley & 
Todd 1976, Tabeling & Chabrerie 1980b): 

In corner regions, is simply related to  Ues by 

which is valid to the first order. The problem can be solved in the (8) and (C) regions 
without making r'eference to the (IC) regions (Temperley & Todd 1971). In such 
regions, ueIc is at  most of the same order as ues. 

(22), (23) have been solved by Shercliff (1953) (case DA = D, = a), Hunt (1965) 
(caaea D, = 00 or D, = 0), Hunt & Stewartson (1965) and Chiang & Lundgren (1967) 
(case DA = 0 and D, = 00). Recently, Tabeling & Chabrerie (1980b) solved the same 
system in the general case (D, and D,  arbitrary), by means of a Galerkin-type 
approach. 

5. The first-order term in the expansion scheme (18) 
6.1. The governing quatiom 

The governing equations for the first-order term of (18) are obtained by equating in 
(1 1)-( 17) all terms of arder A. The resulting equations are more eaaily expressed in 
terms of the velocity function pl'l). We obtain: 

with: 
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in which, for simplicity, we have omitted the exponent (1) on Q,. The boundary 
conditions (26) derive simply from (8), (16), (17) and from the choice of the constant 
Q, = 0 on the boundarim. From (24), (26) it follows that Q, is even in 5 and odd in 7. 

6.2. Resolution of (24) when H, M ~ c  are large 

When M and M+c are large, it is natural to suppose the existence of boundary-layer 
solutions for Q, of the same type as those for Ue: this follows from (24). In any event, 
a definitive check will be obtained by the consistency of the results. Hence, assuming 
that the flow is divided into five regions (Hartmann, interior, secondary, corner and 
inner corner regions (see figure 2)) ,  we apply a perturbation method to solve the 
problem. Q, is decomposed into five terms aa follows: 

(26) 

in which each subscript denotes the corresponding region of flow; in (26), g, 7' and t 
have the same meaning as in (21). Similar expansions hold for ui'), up) andpcl). Now we 
examine each region of flow, restricting ourselves to the quarter-plane 6 > 0; 7 > 0. 
The expressions for g, 7' and t are then respectively 

E' = Mi(,-6); q' = M ( 1 - q )  and t = M(c-5). 

6.2.1. Interior region. Eliminating in (24) terms of O(M-S) compared to M282p/aq2 
and making use of the uniformity of the primary flow Ue in the interior region, we find 

d 6 ,  q )  = TZ(& 7) + p)R(6, 7') + %'(E', 7) + d E ' t  7') + Q,ZC(t, 7% 

-APT = 0. an 
The general form of g~ is then 

9% = qf (t), 
where f (E)  is some even function of 6. 

O(M-2), is (see (24), (26)): 
6.2.2. Hartmann layers. The governing equation for Q , ~ ,  valid through terms of 

and q' + CQ: vH = apH/@' = 0. In (30), the conditions on the side-wall E = c have 
been omitted as being irrelevant to the problem (see the absence of derivatives in E in 
(29)). Now, using the expression for Uez + uiH given in 8 4, and solving (29) leads to a 
general solution of the form 

(31) 

A(E), and simultaneously f ( E ) ,  are now determined by using the boundary conditions. 
We find: 

qH(E,7') = A(f[)e-f+ ~U?M-~[S(I +q') e-f+e-2f]. 

A(()  +34:M-3 = -f(E) and A(f;) + iu2,M-a = -M-y ( f ; ) .  (32) 
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FIGURE 3. Radial velocity prof% in the Hartmann layera calculated at M g 600. 

The corresponding expressions for the velocity field are 

(35)  

Since the expressions (33) and (34)  are independent off,  these in fact yield the correct 
solution of equation (24) through exponentially small terms in M. 

The one-dimensional character of the secondary flows in the (H-I) regions is due 
to a mechanism of vorticity suppression by the magnetic field: (27)  expresses the fact 
that the orthoradial component of vorticity is zero in the interior region; this in turn 
implies suppression of u, and uniformity of u,. The amplitude of the secondary flows 
is determined in Hartmann layers, without reference to the other regions of flow. In 
this sense, such regions are active. 

u$$ = -.&ufM-a[6(q'- 4) e-9' + 2e-9'1- #ufM-8e-'f+O(u2,N-6 

u$y = # u ; M - ~ + O ( U ~ M - ~ )  and u&' = u& = 0. 

In figure 3, we have plotted the function 

U p  uiy + u$% 
U:M-a u; M-8 

-- = - 

against q', for an arbitrary value of E (satisfying It +_ cI 9 M 4 ) ,  and a, value of M 
about 500. The curve exhibits an absolute maximum calculated as q' z 1.1146 and 
M%$l)/u2, w - 0.292. These values are independent of M to first order. In contrast, 
the point where the flow reverses moves significantly to the right of the plane when M 
increases. A reasonable estimate of the position of such a point is 7' N log M .  Up to this 
point, M M increases the profiles flatten, their general form remaining otherwise 
unchanged. 

5.2.3. The BecOndary region. The complete governing equation for y8 is (see (24),  (25), 
I2611 
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together with 
vs = @4M-37 and avs/ag' = 0, 5' = 0. (37) 

Anticipating the study of the corner region, we impose the following condition (which 
will be justified later) on 7 = 1: 

(38) 

Now, considering only the most significant part of vS, we neglect in (36) the firat two 
terms of the left-hand side and find the approximate form of (36) to the Grst order: 

vs@, 1)  = -#M-3u,s(E', 1)  [2uz+u,s(5', 1)I+o(uisM4). 

Since uoz is at most of the same order of u,,, we can estimate the contribution of the 
right-hand side term of (39) to the solution v as O(U&M-~). It follows that we can 
replace (37) and (38) by 

qS=avs/8C = 0 on E ' =  0 and vs=O on 7 =  1, (40) 

which are correct to the first order. The solution of (39), (40) is found to be 

in which up = pn, BP = @~/2)* ,  and q5p(C) is dehed  by 

where 

Ap(@) = -zPM-' s , ' / o O D  [uz+ ues(s, t)]acosaptsinwsdsdt. (43) 

In  (41), q56(0) denotes the usual derivative of q5i(r) at 5' = 0. 
A first result which emerges from the present analysis is that secondary flows are far 

more intense in secondary regions than in Hartmann and interior regions (see the 
ratio tps/vz which is at least O(M)). Such a feature can be understood by examining the 
equation (24): in the interior region, hi/@ is zero; it takes significant values only in 
thin Hartmann layers where viscous effects are strong. On the other hand, in secondary 
regions such a term takes significant values on much larger scales than in Hartmann 
regions. The viscous action is in turn weaker and the secondary flows more intense. 

The expressions (41), (42), (43) have been computed in various cases: (a) all walls 
insulating (DA = DB = a), (b )  walls A A  insulating, walls BB conducting (0, = 00; 

DB = 0) and (c) all walls perfectly conducting (0, = DB = 0) .  The relevant expres- 
sions for ugs are those stated by Shercliff (1963) and Hunt (1966;). In cases (a) and 
( c )  primary flow profiles are universal, whereas in case (b) they change with M. In this 
latter case we have taken M = 200 for the purpose of computation. These three cases 
should be sufficiently representative. 

on the plane E' > 0, 7 > 0, where & 
is defined by 

In figure 4, we show the streamlines & = 

& = MaufBtps in cases (a), (c) and & = ui'tps in case (b). 
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Wall B 
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I 1  1 ' 1  I ,  I 1 1 .  

0 I 2 3 4 5 6 7 8 9 1 0 5 '  

FIGTJRE 4. Secondary flow pattern in the secondary layer 6 > 0 for various values of the con- 
duotivities of the walls: (a) all walls insulating; (a) walls BB conducting, walls A A  insulating; 
(c) all walls conducting.\\\\\, insulating walls. 

It turns out that secondary streamlines are dramatically influenced by the conduc- 
tivities of the walls. In  case (a) there is a single eddy (figure 4a), whereas in cases (b) 
and (c)  there are several counter-rotating eddies with exponentially decreasing ampli- 
tude as E' + 00 (figures 4b, c) .  

The secondary streamlines are closely related to the form of the forcing term auglar. 
This latter is represented in figure 5 as a function of at 7 = 0.5. (On the ordinate, the 
circumflex notation has the same meaning as that for qS). In case (a), au&/ay is every- 
where positive giving rise to the single vortex of figure 4a, whereas in the other cases 
the forcing term has the form of a damped sine wave with changes of sign giving 
rise to counter-rotating vortices. A similar analysis can be done for the amplitudes. If 
d(f) is the maximum amplitude off, our computations indicate that 

d($) = (0.1-0-2) x d(aU&/ay) .  
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1 2  3 4 5 6 7 8 9 10 

6' 

0.5 

0 

-0.5 

0.1 t 

f '  

FIGURE 5. The curl of the centrifugal forces in the secondary layer for various values of the 
conductivities of the walls: (a) all walls insulating; (b)  walls BB conducting, walls A A  insulating; 
(c) all walls conducting. I 

Since d(au&/@) lies in the range 0.05-0-5 in all cases, the levels of amplitude of the 
secondary flows are in turn rather small; we find 

(a)  DA = D,  = 00: $a,,, w 0.021; iirmsx w 0.11, 
( b )  DA = 00, D, = 0: 

We have not considered the case when walls BB are insulating and walls AA 
conducting, since primary flow profiles are then close to those of case (a) (Chiang & 
Lundgren 1967), the secondary flow pattern should not differ dramatically from that 
of figure 4 (a). 

The close relationship between at&/@ and secondary flows in the S region shows 
that these latter are effectively 'driven' by the curl of the centrifugal forces. Essen- 
tially, such a feature is due to the absence of inertial terms in (24). We shall return to 
this point later. 

w 0.041; d,.,,, w 0.18, 
(c) DA = D,  = 0: $amax x 0.006; iirmax w 0.021. 
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5.2.4.  The corner and inner corner regions. As no novelty is involved, we Write 
directly the governing equation for qc to the first order: 

#c( C, 7’) = C( 5‘) e - f +  QM-3~eg( g, 1) [2u1 + Ueg( r ,  I)] [6( 1 + 7’) e-‘+ e-2f] ,  

where C(C) is an arbitrary function of 5‘. Using (45) determines both C(c)  and 
cps( g, 1). To first order we find 

Y A ~ ’ ,  1) = -#Jf -3~eg(C‘ ,  1) [2uz+ueg(5‘ ,  1)1. 
This yields the required condition on 7 = 1, and hence justifies (38). 

In the inner corner region, it can be shown that tpzc is at most O ( U $ ~ M - ~ ) .  

6. Secondary flow effects in the narrow-gap case 

gap aasumption, i.e. in the range of small values of A‘ = Ac. In such a caae we have 
We study now higher-order terms of the expansion scheme (18) under the narrow- 

similar statements holding for the higher derivatives. The system (11)-(15) can be 
approximated (in terms of ug*, hg* and q*) by 

and 

where 

together with homogeneous boundary conditions derived from (16), (17). 

following recurrence relations (valid- for n >/ 1) : 
Next, applying the perturbation scheme (18) to the above system yields the 
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with homogeneous boundary conditions on 5 = +, c and 7 = f 1. (49), (50) can be solved 
by an iterative method: knowing uv), hv), @l), gives up), I@) (see (50))  and, next, using 
(49) leads to #@I, etc. Such a calculation involves formidable algebra; however, we can 
obtain the orders of magnitude of ub") and gYn) in each region of flow by means of such 
a procedure, provided that (18) converges. 

6.1. The interior and Hartmnn r e g k  

Since ihgo)/ag and a#@/aE are zero in H-I regions (aee $ 5), it is easy to show that 
u(gn) = h(Bn) = $n+Q = 0 for !any n 2 1. It follows that up), hh0' and qS1) are the exact 
solution of the problem to any order in h in the range of high-curvature ratios. Such 
a remarkable feature is essentially due to a mechanism of vortic&y suppression by the 
magnetic field: inertial terms are irrotational in (HI) regions, and are simply balanced 
by a pressure gradient. In other words, there is no e&i& mpl ing  between primary 
and 8econdary@8. 

6.2. T'he 8ecOndary hyer8 
Let us consider the (8) region 5 > 0 and introduce the inner co-ordinate E' = Mt(c  - 5). 
The governing system for qW, usn), hSn) to the first order is 

and 

together with homogeneous boundary conditions. Let us consider two cases : (i)D, M-4 
not large, D,M-l not small and (ii) DAM+ large, D,M-l small. 

In caw (i), we have ubo) - u, and 4'') - g M - 2  (see $6). Using (52) gives 

ukll N uiRe8M-fi, 

where Re = uza/v  is the R,eynolds number of the flow. Repeating this procedure for 
#a), up, . . ., #n), u p ,  gives 

uQn) - u,(Re M-*)2n 

and $(n) - u,M-s(Re M-*)Bn--8. 

The expressions for u$ and Q* are therefore of the form 

and 

(53) 

(54) 
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where K = Re A* is the Dean number of the flow, and f Cn), dn) functions of order one. 
(63), (54) provide the sufficient condition for convergence of the perturbation method: 

KM+ 1. (55) 

Now, when (55)  is satisfied, uio) and tp(l) represent accurately the solution of the flow 
within a relative error O(K2M-Q). 

In cme (ii), we have ui0) - Mu,  and tp(l) - u?. It suffices then to replace u, by Mu, 
in all the above expressions. (55 )  remains valid if K is defined as (Mu,a/v) A4 instead 
of (u,a/v) A*. 
(55) can also be viewed as a criterion for inertial effects to be negligible. It is more 

stringent than the condition stated by Baylis & Hunt (1971) which was KM-i < 1. 
When KM-2 becomes l a re ,  viscous forces compete with strong inertial forces and this 
is possible only if the thickness of the boundary layers near the side walls A A  decreases; 
this thickness can be estimated by comparing inertial and viscous stresses, i.e. by 
formulating a purely hydrodynamical equilibrium. According to previous studies 
(Ludwieg 1951 ; Mori, Uchida & Ukon 1971), the thickness is O ( K b )  < O(M-4). The 
flow is in turn modified far away from the side-walls AA.  Further a purely hydro- 
dynamic type flow sets in throughout the duct. 

7. Summary and conclusion 
The present paper gives an analysis of secondary flows in a curved duct subjected to 

a strong axial magnetic field B,. It is remarkable that the magnetic field imposes such 
a simple structure on secondary flows in the main part of the duct (&I regions): in 
such regions the vorticity has only two components (along r and 2); inertial terms are 
ineffectual and secondary flows are simply conveyed by the primary flow without 
being ‘ coupled ’ to it ! 

In  secondary regions, we have profoundly distinct features: such layers are essen- 
tially two-dimensional, all components of the vorticity being non-zero; when the Dean 
number K increases, inertial effects emanating from them penetrate the flow far 
away from the side-walls; secondary-flow effects become significant when KM-2 is 
large enough. 

The conclusions of the present paper are in fair agreement with experiments of 
Baylis(l971)andTabeling & Chabrerie (1980a). (These latterextendedtheexperiments 
of Baylis to rectangular ducts of various aspect ratios.) It turns out that the ‘critical’ 
value of KM-2 beyond which secondary flow effects become significant is found close 
to 5 over all the experiments. Note that this relatively high ‘critical’ value gives also 
a substantial check for the levels of the secondary flows calculated in 4 (these latter 
were found to be rather small). 

1, Baylis, Tabeling & Chabrerie observed that the 
flow dissipations are of hydrodynamic type: this is in agreement with the qualitative 
analysis given above (see 5 6). 

The stability of secondary flows has not been considered here. Experiments men- 
tioned above show that such flows are stable over a large range of Dean numbers when 
the walls AA are conducting and the walls BB insulating. The most unstable cme 
should be with walls A A  insulating and wall BB conducting, since the primary flow 
then exhibits inflexion points and reversed profiles (Hunt 1965), and the secondary 

When K increases until KM-* 
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flow a great number of vortices in thin layers. Some interesting investigations can be 
carried out on this problem. 

We thank Mrs Roussel for the typewriting of the manuscript. 
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